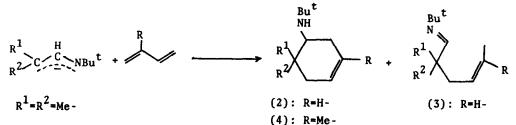
CYCLOALKENYLATION OF ALDIMINE USING 1,3-DIENE SYNTHESIS OF 4-ALKYLAMINOCYCLOHEXENE DERIVATIVES


Kunihiko Takabe, Hidenori Fujiwara, Takao Katagiri and Juntaro Tanaka Department of Synthetic Chemistry, Shizuoka University, Hamamatsu 432, Japan

(Received in Japan 14 January 1975; received in UK for publication 28 February 1975)

It has been well-known that aldimines are readily metalated with organoalkali metal compounds and the resulting metalated aldimines react with alkyl halides, carbonyl compounds and α -haloketones to give α -alkylated aldimines, α,β -unsaturated carbonyl compounds¹ and pyrrole derivatives², respectively. In this communication, we wish to report on the cycloalkenylation of aldimines using 1,3-diene, particularly on the peculiality of the adducts and the application to the synthesis of terpenoids.

Butadiene was allowed to react with N-isobutylidene-t-butylamine (1) in the presence of n-butyl lithium in the benzene-ether solution at 60° for 6.5 hr to give a mixture of 4,4-dimethyl-5-t-butylaminocyclohexene (2) and N-(2,2-di-methyl-cis-4-hexenylidene)t-butylamine (3) with a ratio of 11 : 2 on the glc inspection in a 60% yield.³)

Similar treatments of (1) with isoprene and myrcene at 45° for 20 hr gave 1,4,4-trimethyl-5-t-butylaminocyclohexene (4) and 1-(4-methyl-3-pentenyl)-4,4-dimethyl-5-t-butylaminocyclohexene (5) in 53% and 45% yields, respectively.³)

(5): R=Me₂C=CH-(CH₂)₂-

These reactions were also able to be initiated by means of sodium metal or lithium diisopropylamide in place of n-butyl lithium, in which sodium metal seemed to be preferable to synthesize 4-alkylaminocyclohexene derivatives. Actually, the sodium initiated reaction of isoprene with (1) at 55⁰ for 6 hr afforded (4) in a 70% yield.

For the purpose of the synthesis of terpenoids, the reaction of isoprene with N-(3-methylbutylidene)t-butylamine (6) was also investgated. Isoprene was allowed to react with (6) in the presence of lithium diisopropylamide at 45° for 62 hr to give a 78% yield of a mixture of 5-t-butylamino-p-menthene (7), the aldimine of dihydrolavandulal (8) and N-(5-methyl-2-isopropyl-2-prenyl-4-hexenylidene)t-butylamine (9)⁴⁾ with a ratio of 5 : 6 : 9³, but the sodium-initiated reaction at 40° for 20 hrafforded (7) mainly in a 62% yield (ref. Table 1.).

Further work is now in progress to establish details of the scope and mechanism of the reaction.

Equiv. isoprene	Metal (mmol)		Benzene (m1)	Temp.	Time (hr)	Yields ^{b)} (%)	Products (%) ^{C)} (7) (8) (9)		
4.0	LiN(i-Pr) ₂	(10)	10	45	62	78	25	30	45
4.0	n-BuLi	(4)	5	45	41	70	45	30	-
2.2	LiN(i-Pr)2	(10)	5 ^{d)}	50	30	21	6	92	-
1.8	Na 0.1	g	5	40	6	65	7	90	-
1.8	Na 0.1	g	5	40	20	62	83	4	13

Table 1. Alkenylation of N-(3-methylbutylidene)t-butylamine (6)^{a)}

a) (6): 10 mmol. b) Yields are based on (6).

c) The percentage were determined by glc. d) Ether was used as the solvent.

REFFERENCES AND FOOTNOTES

1) G. Wittig and H. B. Frommeld, Chem. Ber., 97, 3548 (1964).

G. Wittig and H. Reiff, Angew. Chem., 80, 8 (1968).

- 2) G. Wittig, R. Roderer and S. Fischer, <u>Tetrahedron Lett</u>., 3517 (1973).
- The structures of all products were verified by compatible spectral data (ir, nmr and mass spectra).
- 4) The compound (9) is α -diprenylated product of (6).

1240